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Minimax Subset Selection for
Loss Measured by Subset Size

1. INTRODUCTION. A subset selection problem may be formulated as a multiple
decision problem. The distinguishing feature of a subset selection problem is
the goal of determining in which of k partition sets of the parameter space
the true parameter lies. In subset selection problems, attention is usually
restricted to rules which insure a certain minimum probébility, P*, of making
a correct decision. Restricting attention to these rules, minimaxity is
investigated for loss measured by subset size and number of non-best populations
selected. The minimax values are found to be kP* and (k-l)P*, respectively,
under general conditions involving only the topological structure of the
parameter space and the continuity of certain functions of the paramecter.

These results include problems involving nuisance parameters and (possibly
unequal) sample sizes greater than one. Using these results, rules proposed
by Gupta (1965) are found to be minimax in location and scale parameter
problems when the populations are independent and the densi ave monotone
likelihood ratio. Other rules, proposed for selection in te«m. Jf binomial and
multinomial probabilities and multivariate non-centrality parameters, are

shown to be not minimax. A class of rules, proposed by Seal (1955) for the
location parameter problem, is also investigated. For certain values of k

*
and P , rules in this class are shown to be not minimax.

2. MULTIPLE DECISION THEORY FORMULATION. A subset selection problem may be
formulated as a multiple decision theory problem. The specific choice of the
action space sets the subset selection problem apart from other multiple

decision theory problems.




The sample space X is a subset of q-dimensional Euclidean space m4.
The parameter space & is a subset of IR". The observation X = (xl,...,xq)
is a random vector with curulative distribution function (c.d.f.) F(x;8).

It is assumed that there exists a partition of © denoted by {Gi: UL SRR 2

(k > 2). Often this partition is determined by the largest or smallest
coordinate of (some subset of) the parameter. If a particular parameter point
could be placed in more than one set of this partition, e.g., two coordinates
of the parameter are tied as largest, then the point is arbitrarily put in one
of the sets. This is done so the partition is well defined and, in some
problems, this insures the continuity of the risk functions. The general goal
of a subset selection problem is to determine, based on the observation,

which of the k partition sets contains the true parameter. The action space G
consists of the Zk-l non-empty subsets of {ﬂl,...,ﬂ } where L is the statement
g;ei. So the action {nl,nz} corresponds to the decision_Qe@luez. The wi's
correspond to what have been called populations in the earlier subset selection
literature. In this terminology, for a given 8, the '"'best population' is the
one true T, and the other (k-1) ni's are the ''nmon-best populations." So a
statement like,''the best population is the one associated with the largest

parameter value," means ©, = {6: 6. = max €.} (with the exception that if 8, ;g
ety b o ANER ;

tied with other ej's as the largest, that parameter point may not be inkei).

By not assuming equality of k, q and r, this formulation covers problems

involving nuisance parameters and (possibly unequal) sample sizes greater

than one. The o-field associated with the sets X ,& and G will be the discrete

c-field if the set is countable and the Borel o-field if the set is uncountable.




A measurable function, §: X x G- [0,1], is called a selection rule

provided that, for each x ¢ X, I§(x,a) = 1. 6(x,a) is the probability of
0y
selecting subset a having observed x. The k functions defined by qﬁ(z) =

Z §(x,a) are the individual selection probabilities. qh(x) is the
{a:m.ea} i o
1

probability of including LAY in the selected subset having observed x. A
selection rule is not, in general, completely determined by its individual
selection probabilities (see Nagel (1970), Example 1.2.1). But the risk of
any rule, for losses defined in terms of the quantities (2.3), can be computed
in terms of the individual selection probabilities. For this reason, any two
rules which have the same individual selection probabilities shall be considered
equivalent,

The selection of any subset which contains the best population is called
a correct selection, denoted by CS. Let P* be any pre-assigned fixed number
such that 1/k < P* < 1. It has been traditional in the literature to consider
only selection rules which satisfy the P*-condition, ViZ.,s

(2.1) inf Pe(cs[qa >p .
p z

This is obviously equivalent to the following k inequalities being satisfied,

(2.2)  inf E_¢,(X) = inf P (select m.|q) > P, i=1,...,k.
6 ST b
1 b 6

The set of all selection rules which satisfy the P*-condition is denoted by Lb*.
Having insured a high probability of correct selection through the

P*-condition, one would prefer a rule which selects small subsets, that is,

a rule which rejects non-best populations effectively. To reflect this, the

loss in a subset selection problem might be measured in several ways. The

criteria used in this paper are the following,




B

(2.3) i) Number of populations selected (S)

ii) Number of non-best populations selected (S').
So the risk of a selection rule, R(g,qﬂ, is given by i) the expected subset
size, Ee(SIqD, or ii) the expected number of non-best populations selected,

Eg(S' l¢).

*
3. MINIMAX VALUES FOR LOSSES S AND S'. A selection rule ¢ s&b* is minimax
with respect to S if

(3.1) sup Ee(S|q:) = inf sup Ee(SIqﬂ.
(2] L* @

The value on the right side of (3.1) is called the minimax value with respect

to S of the selection problem. Minimaxity with respect to S' is defined by
replacing S with S' in (3.1).

Schaafsma (1969) considered minimaxity in multiple decision problems in a
very general setting. But he did not restrict attention to rules which satisfy
the P*-condition. In this unrestricted problem he found that a minimax rule
(with respect to S or S') never selects a subset consisting of more than one
population. This will certainly not be the case in the restricted minimaxity
of (3.1).

The following subset of the parameter space will be of interest in finding

the minimax values. Let ©

o {0e0: eeéi for all i=1,...,k} where A denotes the

closure of A.

Theorem 3.1. Suppose 90 is non-empty. Suppose there exists goeGb such that

Pg(select ﬂilqﬂis upper semicontinuous at 8, for all qz&b* and all i=1,...,k.

*
Then the minimax value with respect to S is kP and the minimax value with

*
respect to S' is (k-1)P .




Proof. Let "(1)""’"(k—1) denote the k-1 non-best populations and = the

(")

best population at 20' Then the risks at 20 are
k
(3.2) E, (Slg = Z P, (select 7, . |¢)
% i=1 2 ()
o - 1 |
(3.3) E. (S'|¢p = P, (select 7, ...|9).
) i=1 2 ()

*

* *
The '"no data rule'" defined by ¢, (x) P d=l o .5k, has Pe (select ﬂ(i),¢ )

* * * *
= P for all § and all i. S0 Ey(S|¢) = kP and E,(S'|¢) = (k-1)P" for all g
and the minimax values can be no greater than kP* and (k-l)P* respectively.
On the other hand, let Q(i) be the subset of @ where "(i) is best. Since

goee(i), and Pg_(select "(ijlq” is upper semicontinuous at 6,

P, (select ﬂ(i)lqa > inf Pg-(select "(i)lqﬂ

0
% ;
%o
= inf P (CS|® > P
Bpcn = i
(1)
for any gedp*. So
(3.4) sup E_(S|@) > E_(S|@ > kP
6 & s 5

1

and

*
sup Eo(S'|¢) > Ey (S'|9) > (k-1)P
e - -0

* *
for any qeﬂp*. Thus the minimax values can be no less than kP and (k-1)P

respectively.ll

Remark 3.1. The hypothesis that Gb is non-empty is usually satisfied. If
@ = IxIx...xI (k times) where I is an interval on the real line and if the
best is defined in terms of the largest or smallest coordinate of the parameter,

then €, = {6 = (6,6,...,0): @€cI}. I[f X has a multinomial distribution,

© = {(el,...,ek): 8, >0, ) 8, = 1}. If the best population is the coordinate
i=1

associated with the largest or smallest coordinate of the parameter, then Go is

the single point (1/k,...,1/k). It should bc noted that in both of these




s
g
s
?

examples, the determination of Gb did not depend on which population was tagged
as best in those cases where two or more of the coordinates were equal and
largest (or smallest). It may be argued that in problems like the above, any
action is acceptable to the experimenter if.geeb. In this case, one would set
R(&,¢) =0 for_geeb. But, even allowing this, Theorem 3.1 remains true, in the
usual (see Remark 3.2) case where ?Q (select "i|43 is continuous in 6, for (3.4)

can be replaced by

sup Ee(Slq3 > lim Ee(S]qa 3_kP*
ot 88,

and similarly for S°'.

Remark 3.2. The upper semicontinuity assumption of Theorem 3.1 is much less

formidable than it appears. For example, Chung (1970) (problem 10, page 100)
can be generalized to state that if X has a density f(§59) with respect to a
sigma finite measure p and if f(g;g) is continuous at 20 (as a function of g)
for almost all (u) x, then Eew(g) is continuous at 8y for any bounded y. Since

Py (select "i|¢9 = Eg¢ (X) and 0 < @ <1, this shows that P_ (select ni]qﬂ will

be a continuous function of 6 on @ for any ¢ in any problem with densities
which are (almost everywhere) continuous in the parameter.

Theorem 3.1 indicates a relationship between minimaxity with respect to
S and S'. Theorem 3.2 shows that minimaxity with respect to S' is more easily

achieved than minimaxity with respect to S.

Theorem 3.2. Under the assumptions of Theorem 3.1, if ¢ ¢ &P* is minimax with

respect to S, then ¢ is minimax with respect to S°'.




Proof.

sup Eg(S'| @) = sup(Ey(S|9)-Py(CS| )
e g = %

| A

sup{Ee(SI cp)-P*}
9 —

* % *
= kP -P = (k-1)P .

Theorems 3.1 and 3.2 can be used to show that in location and scale
parameter problems, two rules proposed by Gupta (1965) are minimax. In the
following, we will consider the case in which the population associated with
the largest parameter value is best. With the appropriate modifications,
analogous results could be obtained if the population associated with the
smallest parameter value is best.

Gupta (1965) proposed and studied the following two rules. For a

location parameter problem, define the rule R1 by

(3.5) Rl: select w, if x. > max x. -d i=l,...,k

i i—- .

1<j<k
*

where d > 0 1lest constant such that the P -condition is satisfied.
For a scale ter problem, define the rule R2 by
(3.6) R2: select =, if x. > ¢+ max X, i=l,..0k

; -, 1_<_j<k

*
where 0 < ¢ < 1 is the largest constant such that the P -condition is satisfied.

Theorem 3.3. Suppose Xl”"’xk are independent. Suppose 8 is a location

(scale) parameter and X, has density fei(xi) = f(xi-ei)(f(xi/ei)/ei) with

i
respect to Lebesgue measure, u, on the real line ((0,* )). Suppose fe(x)
has monotone likelihood ratio. Then RI(RZ) is minimax with respect to S

and S'.

Proof. Gupta (1965) proved that under the assumptions of independence and
monotone likelihood ratio,

*
sup Ee(SIRl(RZ)) = sup Ee(S|R1(R2)) = kP .
e - ©, -
0




w—»':mw.,u st
- i int i ot : .

The continuity assumption of Theorem 3.1 is satisfied for any location (scale)
parameter density with respect to Lebesgue measure (see Royden (1968) problem 17,
chapter 4). The result follows from Theorems 3.1 and 3.2.]|

Theorem 3.3 generalizes a result of Gupta and Studden (1966). They proved
that RI(RZ) is minimax among all permutation invariant rules in &*. Theorem

3.3 proves minimaxity among all rules in Sp*.

4. NECESSARY CONDITIONS FOR MINIMAXITY. Any minimax selection rule must
satisfy certain equalities on the set Gb. These necessary conditions are
principally of use in proving that certain rules, in violating these conditions,

are not minimax. Theorem 4.1 provides the necessary conditions for minimaxity

with respect to S and Theorem 4.2 the analogous conditions for S'.

Theorem 4.1. Let ¢ be a minimax rule with respect to S. Suppose

Pe(select wi|q9 is upper semicontinuous for all i=1,...k at goe® s s rhen

0
a) P (select m.|¢) = P = inf P_(CS|q) for all i=l,...,k
8 i )
=0 e -~
*
b) P (CS|@ =P = inf Py (CS|@)
=0 e -
*
c) Eq (S|®) = kP = sup E(S|9).
=0 ® -

Remark 4.1. Condition (a) of Theorem 4.1 implies condition (b) and the first
equality in (c) as well as (a) and the first equality in (b) of Theorem 4.2,
If one wishes to verify these conditions for a given rule to check if it might

be minimax, only 4.1(a) need be verified.

Proof. As in the proof of Theorem 3.1, it follows that

0

*
(4.1) P. (select 7.|¢) > P for all i=1,...,k.
20 AEENy




* *
By considering the 'no data rule" ¢ (x) = P, it follows that the minimax value

*
is no greater than kP so, since ¢ is minimax and (4.1) is true,
*

kP

|v

sup P (slg) > B, (S|
© 2o

k *
) Py (select m.|¢) > kP .
: i -
i=l —

All the inequalities are equalities and (a) and (c) are true. (b) follows from

(a) since P,(CS|¢) = P, (select m.|¢) were 6.€@..||
90 90 1 -0 1

Nagel (1970) found that a condition related to 4.1(b), viz.,

inf Py (CS|@) = inf Py(CS|®),
@ A=

was an important property of just selection rules. Conditions 4.1(a) and (b)

have long been recognized (cf. Gupta and Studden (1966)) as intuitively

appealing properties of selection rules. This is especially true for those
problems in which Gb consists of those.parameter points at which one of the k
populations has arbitrarily been tagged as best, e.g., a location or scale
parameter problem in which best has been defined in terms of the largest or

smallest parameter. Theorem 4.1 verifies that, in terms of minimaxity

considerations, the intuition is justified.

Theorem 4.2. Let ¢ be a minimax rule with respect to S'. Suppose

Pe(select nilqa is upper semicontinuous for all i=l,...k at goe@b. Then
a) P, (select m. |¢ = o inf P_(CS|¢) for all i=1,...,k, i#j, where 6,.¢6,
90 B ® 2 -

b)  E, (S'|@) =(k-1)P" = sup E (S'|9).
% 0 <

Proof. Similar to Theorem 4.1.||
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Remark 4.2. For those problems in which the random variables X X, are

1700 Xy

exchangeable for Qp@o and the rule ¢ is invariant under permutations (symmetric),

the following is true for any Q;Gb:

Pgi(select n1|¢) = Pg_(select w2|¢D == Pi (select ﬂkl¢).

In such a problem, then, 4.2(a) implies 4.1(a) and (b). So for these problems,
the necessary conditions in Theorem 4.1 and those in Theorem 4.2 are essentially

the same.
Remark 4.3. Santner (1975) gives conditions under which sup Ee(S|¢) =

sup Ee(S|¢) (sup Ee(S'qu = sup Ee(S'Iqb) which from Theorem 4.1(c) (4.2(b))
7 € = e, —
0 0

is a necessary condition for minimaxity.

In the following three examples, rules which have been proposed by other
authors for various problems will be examined. In all cases, the best
population is the one associated with the largest parameter value. In all cases

the continuity assumptions of Theorems 4.1 and 4.2 are satisfied for all 8 ¢c€

8
since the densities (or probability mass functions) are continuous functions of

the parameter (see Remark 3.2).

Example 4.1. Consider the multinomial selection problem in which the cell
associated with the largest cell probability is best. Here eb =Sk e K S
Gupta and Nagel (1967) proposed using the rule R1 (see (3.5)) for this problem.
They found that for some values of k and P*, the inf Pe(CS]Rl) did not occur at
(1/k,.e..,1/k). So 4.1(b) and 4.2(a) are violated g;d R1 is not minimax with

*
respect to S or S' for these values of k and P .




Example 4.2. Consider the binomial selection problem in which xl,...,xk are

independent binomial random variables with success probabilities 61,...,ek.
€, = {(el,...,ek)le1 =...= 8 =0, 0<6<1}. Gupta and Sobel (1960) proposed

using the rule R1 (see (3.5)) to select a subset including the population
associated with the largest ei. These authors realized that Ee(S|R1) was not

constant on Gb, as required by 4.1(c) if R, were to be minimax. Indeed,

1
Ee(SIRl) +kas 8~ (1,...,1) and Ee(S'|R1) + (k-1). The same is true for

the arcsin transformation proposed by these authors.

Example 4.3. The following general problem has been considered by Gupta and

Panchapakesan (1972). Suppose = -»T) are independent populations with

100"
absolutely continuous distributions Fe (xi) where BieI (an interval on the real
line). The family {Fe: 8el} is assumed to be stochastically increasing in 6.

Gupta and Panchapakesan investigated a class of procedures for selecting a

subset containing the population associated with the largest ei defined by:

(4.2) Rh: select LAY 1ff: h(xi) 2'12;23 X5

where h is a real valued function satisfying certain regularity conditions.

€, = {(8,...,8): 6el}. For any § = (6,...,6)c€b and i=1,...,k,
k-1
(4.3) Py (select . |Ry) = [ Fy7 (h(x))dFy(x).

By Theorems 4.1 and 4.2, if the procedure Rh is to be minimax with respect to
SorS', (4.3) must be constant on eb. But Gupta and Panchapakesan have
found conditions under which (4.3) will be strictly increasing in 8. Gupta

and Studden (1970) have established the strict monotonicity of (4.3) for the

non-central xz and non-central F distributions when Rh is R2 (see (3.6)).
This is of interest in the problem of selection in terms of Mahalanobis

distance for multivariate normal distributions. Gupta and Panchapakesan (1969)
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have established the strict monotonicity of (4.3) in the problem of selection
in terms of the largest (or smallest) multiple correlation coefficient when Rh
is R2 (or an analogous rule). Both the conditional and unconditional cases
were considered as well as two different statistics, Rz, the sample multiple

2

*
correlation coefficient, and R ° = Rz/(l—Rz). In violating Theorems 4.1(a)

and 4.2(a), all of the above rules are not minimax with respect to S or S'.

Remark 4.3. The fact that the above rules are not minimax was previously

reported in some cases. But the interesting point is that one need not

always examine Ee(Slqﬂ or Ee(S'|qﬂ to determine that a rule is not minimax.

Often in investigating the least favorable configuration, i.e., that go for
which P, (CS|¢) = inf Pe(CS[qa, one can reduce the problem (o investigating
-0 B

inf Pe(CS]qD. This, for example, is the case for just rules as defined by

€ -~

Nagel (1970) and Gupta and Nagel (1971). If one finds that Pe(CSIqﬂ is not
constant on 90 (and some mild continuity assumptions are satisfied), then R

is not minimax. Thus, the only analysis required, to show that a proposal rule

is not minimax, may be the analysis used to find the least favorable

configuration.

S. MINIMAXITY CONSIDERATIONS FOR SEAL'S CLASS. Seal (1955) proposed a class
of rules for the location parameter problem. The rules were proposed for the
independent normal populations problem but might reasonably be used in any

location problem. In this section, a lower bound is obtained for sup E6(8|q3
()

and sup Ee(sd¢) for rules in this class. This lower bound is then used to
©

prove that, in certain cases, the rules in this class are not minimax.




13

Definition 5.1. Let % denote the class of selection rules having the form:

k-1
: select w. iff x. > a.Xp.,-d
(PE 1 L le JX[J]

s X are the ordered observations excluding x., a, are
] == Mk-1] e L

where x[1
k-1

non-negative constants with z aj = 1, and d is the smallest positive constant
j=1

for which the P -condition is satisfied.

R1 (see (3.5)) is in ¥ and corresponds to setting ak_1=1, aj=0,j=1,...,k-2.
Comparisons between Ee(S]Rl) and Ee(Slqa for certain other rules, @ %, have
previously been made by Seal (1957) and Deely and Gupta (1968). These authors
considered specific parameter configurations (e.g., slippage configurations)

and specific alternatives to R In the following results, the sup over all

1
parameter configurations and all rules in ¥ are considered. But, as have the
previous authors' works, these results shed some favorable light on Rl'

Throughout this section, it will be assumed that @ =nﬂﬁ The c.d.f. of X
is F(x-8). The following notation will be used. 6[1] el B[k] will denote
the ordered coordinates of 8 = (91,...,ek) so that the best population is the
{unknown) one associated with e[k]. Sometimes, a sequence of parameter points
g will be considered in which case en[l] :3":-en[k] will denote the
ordered coordinates of Qn = (enl,...,enk).

Theorem 5.1 will be used to obtain a lower bound on the expected subset
size. As stated, it also points out an intuitively undesirable property of all

rules in ¥, except R., namely, there exist parameter points such that

1!

] is arbitrarily large but the probability of including the

K]0 rk-1]
population associated with 6[k_1] in the selected subset is arbitrarily near

one.

Theorem 5.1. Let g, € if\{RI}. Let r=min {i: a, > 0}. Then there exists a

sequence of parameter points b Mg and a subset Kc{1,...,k} of size k-r-1 such

that for i ¢ K, lim o -9 _.=w and lim P_ (select 7, ¢ )=1,
i n[k] "ni e gﬂ AR
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Remark 6.1. For g - Rl’ k-r-1=0 so the theorem is vacuously true for R1 also.

For any ¢ } Ry» T < k-2 so K will be non-empty.

k-1
Proof. Let S. = {x: x., > Z a.x..,-d} be the selection region for n, using
s 1R A b ) i

P,- Define a sequence of subsets of % by

(5.1) A = ixs 20 2x >n,n> xJ. > -d, j=r+l,r+2,...,k-1,

s € 0 ST

(TR e
el

n

where c, = (-n-2n ak-l)/ar'

Let K = {r+1,...,k-1}. First it will be shown that AncSJ. for all jek,
for all large n. Since a1 > 0 and a, >0, < < -n/alr < -d for all large n.

Fix such an n and jeK. Let X € An. Then x

{x

[k-1] = %k {x[r+1]”"x[k-2]} =

’xk—l}\{xj} (this set is empty if r=k-2) and {x[l]"“’x[r]} =

{xl,...,xr}. Using these facts and (5.1), (5.2) and (5.3) are obvious.

el st

(5.2) a‘k-l x[k_” ‘8 x[r] < ak_1'2n + arcn = -n
k-2 )
<
(5.3) m=§-+1 amx[m] _<_max{x[r+1],...,x[k_2] <n

Using (5.2), (5.3) and the fact that a = 0 m=1,...,r-1 it follows that
k-1 k-1

5.4 -d = a -d < -n+n-d = -d.

(5.4) I afpde i Sfppdcn

But x:i > -d by (5.1) so EESJ.. This is true for any x ¢ An SO An CSJ. for all

] e K.
Define a sequence of parameter points _O_n = (enl"”’enk) by
3n/2 i=k
(5.5) enj = (n/2 j = rel,0e0,k=1
c,-n = 1,.00,T

For any j ¢ K, lim 6 [x) ° enj = 1lim (3n/2-n/2) = =,

n+® n-+o

. it it s




Pg“(An) » Pg(An-Qn)
(5.6) = P(n/2 :_Yk > -n/2, n/2 > Yj > -n/2-d,
j = el .. ,k-1, n :_Yi > -w, i=l,...,T)
where Y = (Yl,...,Yk) has c.d.f. F(y). (5.6) converges to 1 as n»= since all

the limits converge to » or -« as appropriate. Since An C:Sj for all j € X,

(5.7) lim P, (select "jl“’a) = lim P, (sj) > lim PQ (A) =1
n+e -n - ne  =-n e =n

for all j e K.||

Theorew 5.2. Let ¢ %. Let r=min {i: a, > 0}. Then

a) sup Eg (S|lg) > k-r
(7] -—

' -r-
b) sz)p E_e- (s lcpi) > k-r-1.

Proof. 1If e Rl’ k-r=1 and k-r=0 so (a) and (b) are obviously true.

For any ¢ ¢ &f\{Rl}, using the notation defined in the proof of

Theorem 5.1 we have

{v

sup E_ (S|¢) > 1im E, (S]@)
© 2 2 n+e 9ﬂ =

(5.8)

{v

k
lim ) Py (select "mlqﬁ)
i m=T+ 2

1 -
Theorem 5.1 proved the first k-r-1 terms converge to one in the limit. For
every x € A, X, is the largest coordinate so A <SS, for every n. Thus (5.7)
holds with j=k. Hence the bound k-r for (a).

From (5.5), T is the best population for all 8- Thus using the same

reasoning as above, excluding the term Pe (select “qub) in (5.8), yields the

bound k-r-1 for (b).]])

Corollary 5.1. Let ¢, ¢ 3?\{R1}. Let r = min{i: a, > 0}. Then
(a) if P* < (k-r)/k, % is not minimax with respect to S

(b) if P' < (k-r-1)/(k-1), % is not minimax with respect to S'.

|
|
i
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* * * *
Proof. The "no data rule", ¢, (x) = P, has sup E, (S|¢) = kP < k-r < sup
e ©

Eg (Slqa). Hence (a) is true. (b) is analogous. ||

*
Corollary 5.2. (a) If P < 2/k, no rule in jf\{RI} is minimax with respect

*
toS. (b) If P < 1/(k-1), no rule in jf\{Rl} is minimax with respect to S'.

Proof. Any rule in ﬁf\{Rl} has r < k-2. So the smallest upper bound in

Corollary 5.1(a) is 2/k. Hence (a) is true. (b) is analogous.ll
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